
The Modern Form of Bernoulli’s Theorem
 The modern form of Bernoulli’s theorem is:
If N is sufficiently large,
the probability that  <    will be greater than  1 -  .M

N P

M is the number of successes in N trials,  P is the probability of a
success in a single trial and   and  are positive numbers chosen as
small as desired.
In this paper, I outline the proof of this theorem using Bernoulli’s 
and Markov’s techniques.
One of the improvements that Markov  made to Bernoulli’s theorem
was to remove the restrictions that Bernoulli put on N and   .
In Bernoulli’s proof   had to be  and N had to be a multiple of T.1

TBernoulli used NT to stand for the number of trials.  I will use N* to
stand for Bernoulli’s use of N and N will stand for the number of
trials.
NP  roughly corresponds to N*R
NP + N   roughly corresponds to N*R + N*
NP - N    roughly corresponds to  N*R - N*

I say roughly because NP,  NP + N  , and NP - N   may not be
integers.
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Let   be the smallest integer greater than or equal to NP.
Let  be the smallest integer greater than  or equal to NP + N  .
Let k be the largest integer less than or equal to  NP - N  .
Let Ti be the probability of getting exactly i successes in N trials.
The probability that   <     is equal to:M

N P
Tk+1+Tk+2+ .... +T+T+1+ .... +T-1  and the probability that
            is equal to: T0+T1+ ....+Tk+T+T+1+ ....+TN

M
N P 

Let A = T+T+1+ .... +T-1 and B = T+T-2+ ....+Tk+1
Let C = T+T+ ....+TN    and D = Tk+Tk-1+ ....+T0

The probability that    <   is A + B   and   A+B+C+D = 1. M
N P

We will show that if N is sufficiently large, C<  and D<A
1

B
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So  then  A+B + +  > 1.     So  A+B > 1 - A
1

B
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So if  is sufficiently large, the probability that  isM
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greater than 
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Since  k <   >  >  > .... > T
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It remains to be shown that by making N sufficiently large  
       
         nd   can be made smaller thanT

T



T
T

k
 1

We will show that    And    can be made as large asT
T



T
Tk
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         desired by making N sufficently large, which gives the same  
   
         result.  
        We will apply my method from Lemma 7 of my paper 
        Bernoulli’s Theorem.
        We calculate   from the formula   P(K) = T

T
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K N K
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        Where P(K) is the probability of getting exactly K successes in  
       N trials when the probability of success on a single trial is P        
       and  Q = 1 - P.
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Reversing the order of the factors in both the numerator and
denominator so they will be increasing from left to right instead of
decreasing we get:
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 Notice that each fraction is obtained from the previous fraction by
adding  Q to the numerator and P to the denominator .                   
The first fraction is itself obtained from   by adding Q to the
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numerator and P to the denominator . There are  fractions in the
product, so by the same reasoning as in lemma 7,   isT
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greater than the smaller of   or  .


Q
NP P









Q

NP P( )






If  NP and N are both integers thenNIf one or both are
not integers, then 
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Reversing the order of the factors in both the numerator and
denominator , so that the factors will be increasing instead of
decreasing gives:
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 Notice that each fraction is obtained from the previous fraction by
adding P to the numerator and Q to the denominator . The first
fraction is itself obtained from    by adding P to theNP P P
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numerator and Q to the denominator. There are k-1  fractions
in the product, so by the same reasoning as in lemma 7,  
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If  NP and N are both integers thenk-1 = Nand this is the
smallest value that k-1 can have .
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So if N is sufficiently large, C <   A    and  D  <  B
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This completes the proof 
Daniel Daniels
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